Asymmetric inhibitory connections enhance directional selectivity in a three-layer simulation model of retinal networks.
نویسندگان
چکیده
In this paper, we found that spatial and temporal asymmetricity of excitatory connections are able to generate directional selectivity which can be enhanced by asymmetrical inhibitory connections by reconstructing a hexagonally-arranged three-layered simulation model of retina by NEURON simulator. Asymmetric excitatory inputs to ganglion cells with randomly arborizing dendrites were able to generate weaker directional selectivity to moving stimuli whose speed was less than 10 μm/msec. By just adding asymmetric inhibitory connections via inhibitory amacrine cells, directional selectivity became stronger to respond to moving stimuli at ten times faster speed (< 100 μm/msec). In conclusion, an excitatory mechanism appeared to generate directional selectivity while asymmetric inhibitory connections enhance directional selectivity in retina.
منابع مشابه
Necessity of acetylcholine for retinal directionally selective responses to drifting gratings in rabbit.
1. A model for retinal directional selectivity postulates that GABAergic inhibition of responses to motions in the null (anti-preferred) direction underlies this selectivity. An alternative model postulates that besides this inhibition, there exists an asymmetric, nicotinic acetylcholine (ACh) input from starburst amacrine cells. It is possible for the latter but not the former model that stimu...
متن کاملA Three-Layer Network Model of Direction Selective Circuits in the Optic Tectum
The circuit mechanisms that give rise to direction selectivity in the retina have been studied extensively but how direction selectivity is established in retinorecipient areas of the brain is less well understood. Using functional imaging in larval zebrafish we examine how the direction of motion is encoded by populations of neurons at three layers of the optic tectum; retinal ganglion cell ax...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملA detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity.
In order to arrive at a quantitative understanding of the dynamics of cortical neuronal networks, we simulated a detailed model of the primary visual pathway of the adult cat. This computer model comprises a 5 degrees x 5 degrees patch of the visual field at a retinal eccentricity of 4.5 degrees and includes 2048 ON- and OFF-center retinal beta-ganglion cells, 8192 geniculate X-cells, and 4096 ...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of integrative neuroscience
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2010